Depression and Chronic Illness:

Focus on CKD & ESRD Balwinder Singh, MD

Senior Associate Consultant,
Department of Psychiatry & Psychology
Mayo Clinic

Welcome

- Thank you all for being part of this call today.
- All phone lines are muted. Please use the raise hand or chat box features to ask questions.
- This session will be recorded

Depression and Chronic illness - Focus on CKD & ESRD

Balwinder Singh, M.D., M.S.

Balwinder Singh, MD, MS

Senior Associate Consultant
Assistant Professor of Psychiatry
Mayo Clinic Depression Center
Department of Psychiatry and Psychology
Mayo Clinic, Rochester, MN

Objectives

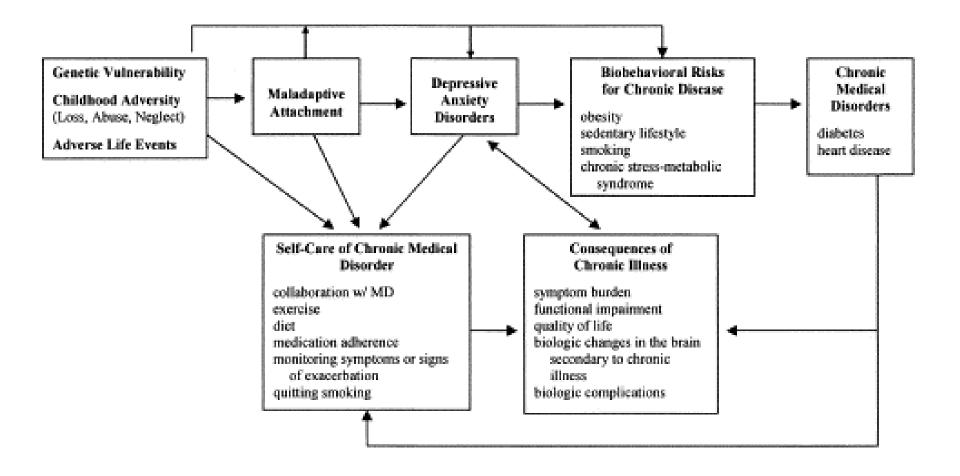
- To identify the association between depression and chronic medical illness
- To discuss the impact of depression in patients with chronic kidney disease (CKD) & end-stage renal disease (ESRD)
- To evaluate treatment interventions in patients with depression and CKD & ESRD

Major Depressive Disorder

- A. Five (or more) of the following symptoms have been present during the same 2-week period and represent a change from previous functioning; at least one of the symptoms is either (1) depressed mood or (2) loss of interest or pleasure.
- Note: <u>Do not include symptoms that are clearly attributable to another</u> medical condition
- PLUS four of the following symptoms:
 - Insomnia or hypersomnia nearly every day
 - Psychomotor retardation or agitation (observable by others)
 - Poor appetite and weight loss, or increased appetite and weight gain (a change of >5% of body weight in a month)
 - Fatigue or loss of energy nearly every day
 - Feelings of worthlessness or excessive or inappropriate guilt
 - Diminished ability to think or concentrate, or indecisiveness
 - Recurrent thoughts of death or suicide
 - B. The symptoms cause clinically significant distress or impairment in social, occupational, or other important areas of functioning.
 - C. The episode is not attributable to the physiological effects of a substance or another medical condition.

Prevalence Of Major Depression

- General population: 8.1 % (lifetime 17%)
- Heart disease 15% to 23%
- Diabetes: 11% to 15%
- HIV: 4% to 23%
- CKD: 21%; ESRD: 20% 25%
- Stroke: 9% -31%
- Parkinson's disease: 20% -30%
- Multiple sclerosis: 16%-30%


Possible Causes Of Increased Prevalence Of Major Depression In Chronic Illnesses

- Secondary psychological reaction to the development of the disease;
- Secondary to the complications or aversive symptoms of that disease;
- Secondary to the side effects from medication used to treat these illnesses;
- Direct pathophysiologic effect on the brain (i.e., stroke, or multiple sclerosis)
- Indirect physiologic effects (i.e., increasing cytokine levels or other inflammatory factors that affect the brain)

A Conceptual Model Of Interaction Between Major Depression And Medical Illness

Depression and Chronic Medical Illness

- Amplifies physical symptoms associated with medical illness
- Comorbidity increases impairment in functioning
- Decreases adherence to prescribed regimens
- Adverse health behaviors (diet, exercise, smoking)
- Increases mortality

Relationship Of Depression To Physical Symptom Perception

- Interferes with adaptation to chronic aversive disease symptoms and is associated with heightened awareness and focus on symptoms
- DM: Depressive symptoms significantly correlate with 9 - 11 symptoms traditionally associated with poor glucose control (e.g., polyuria, polydipsia)
- Hepatitis C: Higher depressive symptom severity correlates with impairment from the symptoms of fatigue
- CAD: More symptomatic reports of chest pain and fatigue

Depression And Functional Impairment

- Additive functional impairment
- More work lost days and cut-back days
- Additive disability
- Decrements in Quality-Adjusted Life Years
- Independently predicts increased rate of functional decline in patients >= 65 yrs of age
- Predictive of functional impairment over time then is severity of physical illness

Medical Utilization And Costs

- Increased medical costs in depressed elderly patients.
- Total ambulatory costs were 43% to 52% higher and total ambulatory and inpatient costs were 47% to 51% higher in depressed compared with non-depressed elderly patients after adjustment for chronic medical illness.
- More primary care appointments and medications
- Longer length of stay
- Increased cardiac rehospitalization rate

Increased Cardiac Risk & Mortality

 Increased risk of death from cardiovascular disease, especially in men

Possible mechanisms:

- Decreased heart rate variability
- Increased platelet aggregation
- Higher levels of inflammatory risk markers (Creactive protein and interleukin-6)
- Decreased adherence to lifestyle changes, such as exercising, quitting smoking, and taking medications.

Impact Of Depression In Patients With CKD And ESRD

Chronic Kidney Disease To End-stage Renal Disease

- CKD slight decrease in kidney function to severe decrements leading to uremia
- Uremia lack of appetite, dysgeusia, nausea and vomiting, fatigue, lack of interest, somnolence, delirium, seizures
- ESRD/ESKD worse medical outcomesautonomic dysregulation and behavior non adherence

Chronic kidney disease classification based upon glomerular filtration rate and albuminuria

GFR stages	GFR (mL/min/1.73 m ²)	Terms
G1	≥90	Normal or high
G2	60 to 89	Mildly decreased
G3a	45 to 59	Mildly to moderately decreased
G3b	30 to 44	Moderately to severely decreased
G4	15 to 29	Severely decreased
G5	<15	Kidney failure (add D if treated by dialysis)
Albuminuria stages	AER (mg/day)	Terms
A1	<30	Normal to mildly increased (may be subdivided for risk prediction)
A2	30 to 300	Moderately increased
A3	>300	Severely increased (may be subdivided into nephrotic and non- nephrotic for differential diagnosis, management, and risk prediction)

The cause of CKD is also included in the KDIGO revised classification but is not included in this table.

GFR: glomerular filtration rate; AER: albumin excretion rate; CKD: chronic kidney disease; KDIGO: Kidney Disease Improving Global Outcomes.

Data from:

- KDIGO. Summary of recommendation statements. Kidney Int 2013; 3 (Suppl):5.
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39 (Suppl 1):S1.

Depression Scales Cut Off

- Patient health questionnaire (PHQ-9):10
- Beck depression inventory (BDI):14 to16
- Center for epidemiologic studies depression Scale (CESD):18
- Cutoff score is higher than in general population

Prevalence Of Depression In CKD And ESRD

- 3-4 times higher than the general population & 2-3 times higher than other chronic illnesses.
- Pt. who <u>screen positive</u> for depression should be referred to a qualified professional to <u>confirm</u> the diagnosis with the <u>clinical interview</u>
- ESRD receiving dialysis: Prevalence 39% (screening questionnaires) & 23% (clinical interview)
- CKD: Prevalence 27% (screening questionnaires) &
 21% (clinical interview)
- Minorities higher rates (black, Hispanic) less likely to use antidepressants. Some studies had mixed results

Depression And Outcomes In CKD

- Adverse medical outcomes –
- Hospitalizations
- Acute kidney injury
- Faster rate of decline in eGFR
- > ESRD
- Mortality
- Adverse psychosocial outcomes -
- Poor quality of life
- Poor social support
- Sexual dysfunction

Depression And Outcomes In ESRD

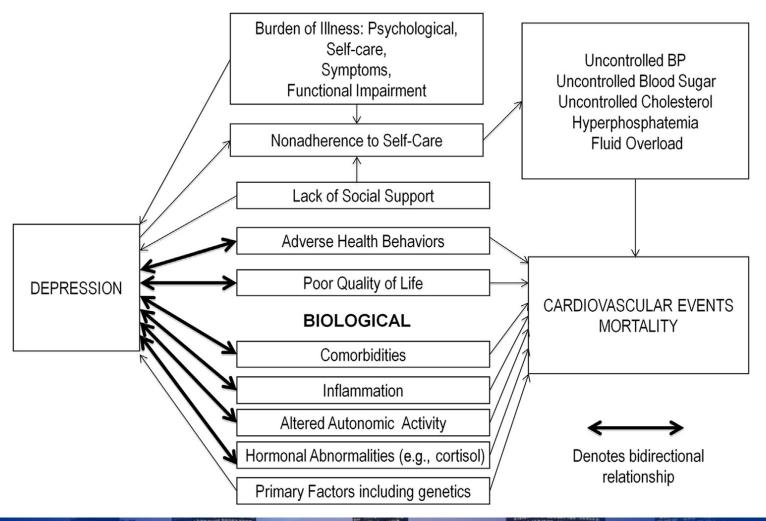
- Fatigue, poor sleep quality, pain, pruritus, sexual dysfunction
- Poor psychosocial outcomes, lower quality of life
- Increased ED visits, hospitalizations, and, accumulated hospital days
- Higher cardiovascular events, peritonitis and withdrawal from dialysis and suicide
- 1.5 times increased mortality in patients on dialysis (independent of confounding factors)

Risk Factors For Depression

Patients with ESRD	
Younger age	Longer duration of dialysis
Female	Diabetes, CAD
White race	Cerebrovascular disease and peripheral vascular disease
Patients with CKD	
Younger age	Lower family income, unemployment
Female	Hypertension
Black race, Hispanic ethnicity	Smoking status
Lower education	Diabetes, CAD

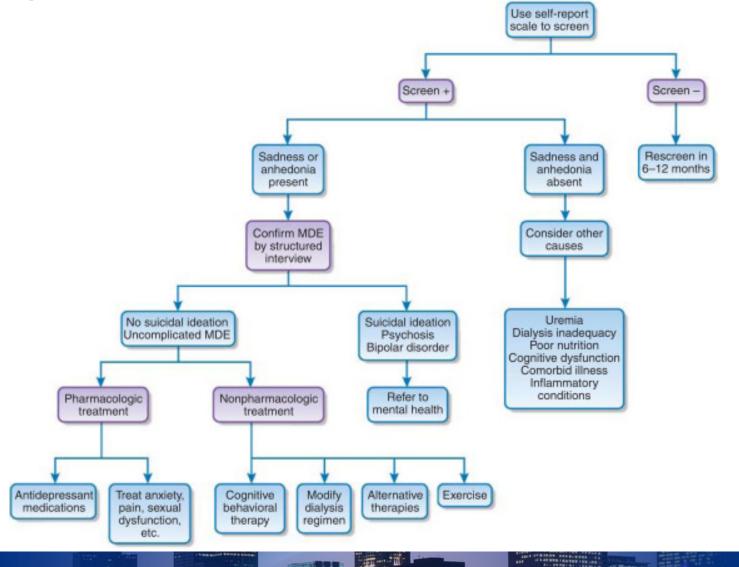
Depression And Coping In Adults Undergoing Dialysis For ESRD

- A cross-sectional study conducted at several dialysis centers in Malaysia
- The Beck Depression Inventory II (BDI-II) and the Brief COPE scale were used to measure depression and coping skill, respectively
- 274 ESRD patients 183 hemodialysis and 91 continuous ambulatory peritoneal dialysis patients
- Behavioral disengagement and self-blame were identified as predictors for depression
- Better outcomes Good interpersonal and treatment control, and greater understanding of their illness


Ibrahim et al. Depression and coping in adults undergoing dialysis for ESRD. Asia Pac Psychiatry. 2013:35-40.

Mechanisms Of Depression And Adverse Medical Outcomes

BEHAVIORAL

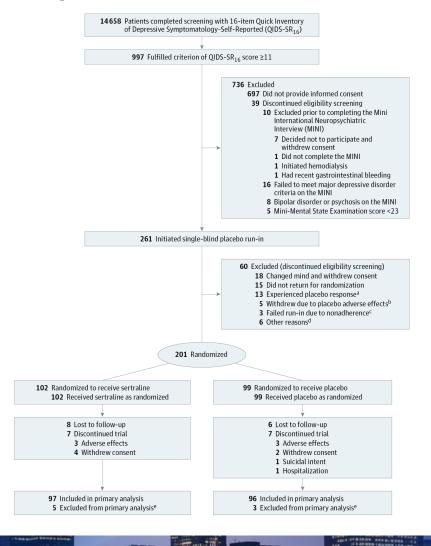


Treatment Interventions In Patients With Depression And CKD/ESRD

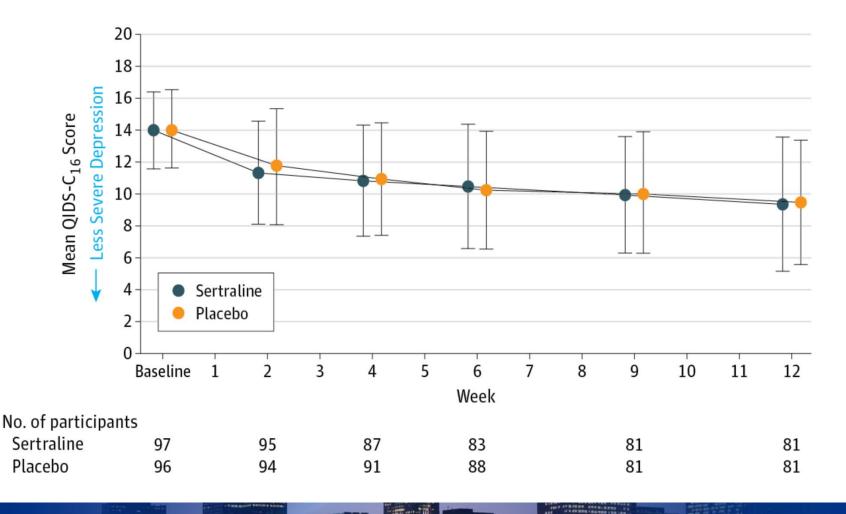
Proposed Algorithm For Management Of Depression In Patients With CKD & ESRD

Treatment Of Depression

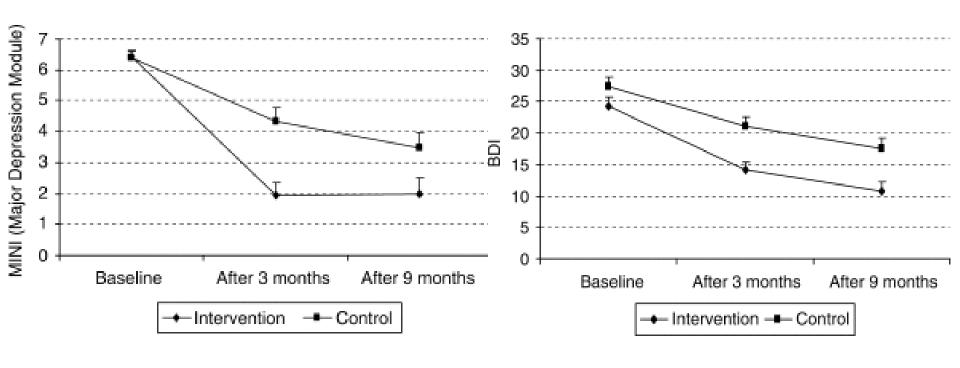
- Combination of antidepressant and psychotherapy has been shown to be more effective in chronic illnesses
- Collaborative care models have shown consisted improvement in medical outcome
- Limited studies in patients with CKD/ESRD
- Undertreated in both patients with CKD & ESRD
- 31% -35% received antidepressant medications


Antidepressants

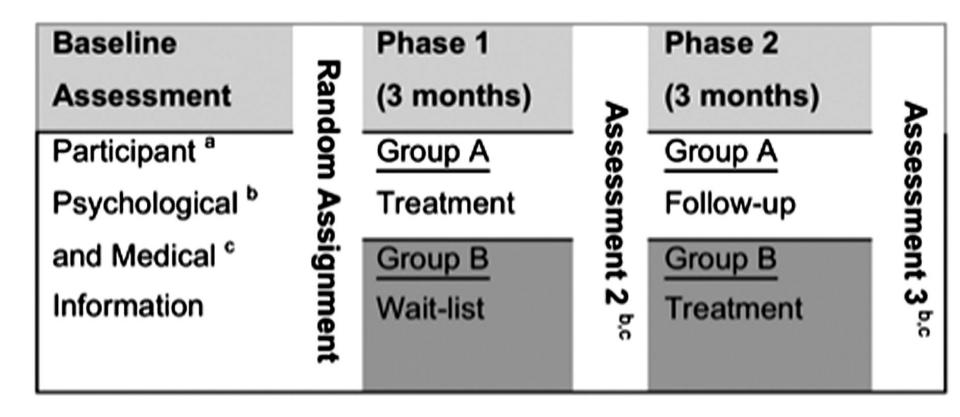
- In ESRD data is sparse & inconclusive
- Monitor closely for side effects and drug interactions.
- Fluoxetine, Citalopram, Paroxetine, sertraline
- Venlafaxine, duloxetine, mirtazapine, bupropion
 - dose reduction is recommended
- Meta-analysis showed SSRI significantly improved depressive symptoms – 1st line.
- Ongoing RCTs


Patient Enrollment In The Chronic Kidney Disease Antidepressant Sertraline Trial (CAST)

Effect Of Sertraline On Depressive Symptoms In Patients With CKD Without Dialysis Dependence: The CAST Randomized Clinical Trial

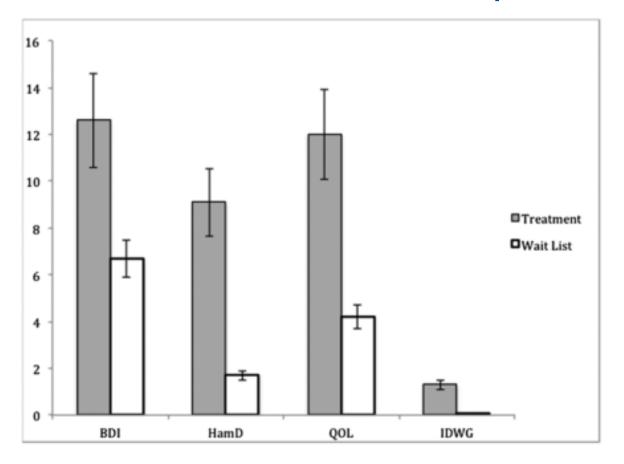

Nonpharmacological Interventions

- Cognitive behavior therapy -
- Designed to treat dysfunctional cognition, negative emotions, and maladaptive behaviors
- Several studies have shown an improvement of depressive symptoms with its use
- Significantly improved depressive symptoms and quality of life
- Improved sleep quality, inflammation adherence to fluid restrictions in patient with ESRD


Effectiveness Of CBT In Chronic Hemodialysis Patients Diagnosed With Major Depression

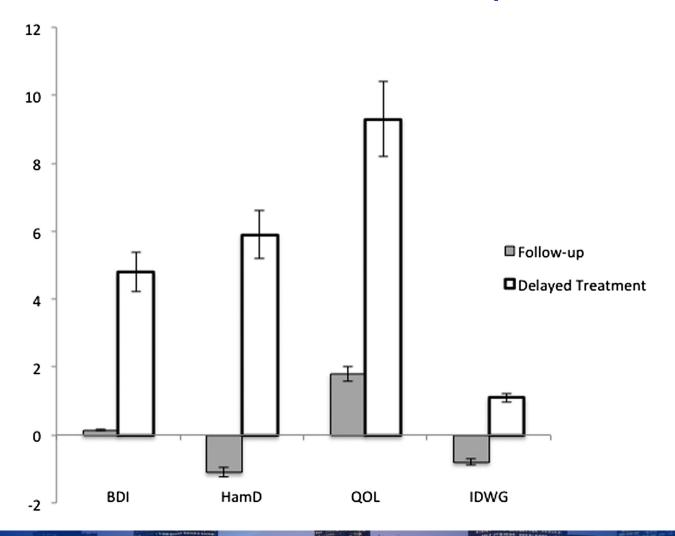
Duarte et al. Cognitive-behavioral group therapy is an effective treatment for major depression in hemodialysis patients. Kidney Int. 2009;76(4):414-21

Crossover Study Design To Study Depression In HD Patients With Elevated Depressive Affect



Cukor et al. Psychosocial intervention improves depression, quality of life, and fluid adherence in hemodialysis. J Am Soc Nephrol. 2014;25(1):196-206.

Model-adjusted **Mean Change** For The Treatment And Wait-list Groups In Phase 1



Cukor et al. Psychosocial intervention improves depression, quality of life, and fluid adherence in hemodialysis. J Am Soc Nephrol. 2014;25(1):196-206.

Model-adjusted Mean Change For The Treatment And Wait-list Groups In Phase 2

Results

- 89% in the treatment-first group were not depressed at the end of treatment compared with 38% in the wait-list group (P=0.01).
- The treatment-first group experienced greater improvements in quality of life, and interdialytic weight gain than the wait-list group.

Exercise Therapy

- Recent review showed exercise improve depressive symptoms
- Aerobic exercise MC training in HD patients

Intradialytic - indoor stationary bicycle

Interdialytic - walking, mild jogging to cycling

- 35 % improvement in depression after 6 months of aerobic exercise on non dialysis days
- Home-based exercise training improved outcomes

Resistance Exercise Training

- Improved various health-related measures such as muscle and body composition and quality of life.
- Limited evidence regarding aspects related to mental health and depression
- One small study (8 HD patients) showed improvement in mental component of SF36 questionnaire

Recommendations For Exercise Training

- Minimum program length of 6 months with at least 35 min per exercise session to attain significant improvement in psychological –related parameters
- Interruptions for long periods of time will likely cause benefits to be lost.
- Intradialytic exercise is optimal, has low drop-out rates

Mitrou et al. Exercise training and depression in ESRD: a review. Semin Dial. 2013;26 (5):604-13

Barriers To Treatment

- Already high medication burden
- Unwillingness to follow certain recommendations such as home exercise
- Nephrologists often do not start therapy for depression – 82% believe its PCP's responsibility
- Non availability of resources especially for combined behavioral and medical intervention

Future?

- Need for cognitive behavior strategies integrated with CKD education
- Collaborative care model
- Patient-centered outcomes in clinical kidney research
- RCTs studying various treatment modalities

References

- Hedayati et al. A practical approach to the treatment of depression in patients with chronic kidney disease and end-stage renal disease. Kidney Int. 2012;81:247-55.
- Hedayati et al. Prevalence of major depressive episode in CKD. Am J Kidney Dis. 2009;54(3):424-32
- Katon WJ. Clinical and health services relationships between major depression, depressive symptoms, and general medical illness. Biol Psychiatry. 2003;54(3):216-26.
- Yu et al. Associations between depressive symptoms and incident ESRD in a diabetic cohort. Clin J Am Soc Nephrol. 2014;9(5):920-8
- Palmer et al. Antidepressants for treating depression in adults with end-stage kidney disease treated with dialysis.
 Cochrane Database Syst Rev. 2016 May
- Barcellos et al. Effects of exercise in the whole spectrum of chronic kidney disease: a systematic review. Clin Kidney J. 2015;8:753–765.
- Mitrou et al. Exercise training and depression in ESRD: a review. Semin Dial. 2013;26 (5):604-13
- Shirazian etal. Depression in Chronic Kidney Disease and End-Stage Renal Disease: Similarities and Differences in Diagnosis, Epidemiology, and Management. Kidney Int Rep (2017) 2, 94–107
- Duarte et al. Cognitive-behavioral group therapy is an effective treatment for major depression in hemodialysis patients. Kidney Int. 2009;76(4):414-21
- Cukor et al. Psychosocial intervention improves depression, quality of life, and fluid adherence in hemodialysis. J Am Soc Nephrol. 2014;25(1):196-206.
- Ibrahim et al. Depression and coping in adults undergoing dialysis for end-stage renal disease. Asia Pac Psychiatry. 2013:35-40.

Questions?